Quasi-Many-Body Localization in Translation-Invariant Systems
نویسندگان
چکیده
منابع مشابه
Quasi-Many-Body Localization in Translation-Invariant Systems.
We examine localization phenomena associated with generic, high entropy, states of a translation-invariant, one-dimensional spin ladder. At early times, we find slow growth of entanglement entropy consistent with the known phenomenology of many-body localization in disordered, interacting systems. At intermediate times, however, anomalous diffusion sets in, leading to full spin polarization dec...
متن کاملMany-body localization in periodically driven systems.
We consider disordered many-body systems with periodic time-dependent Hamiltonians in one spatial dimension. By studying the properties of the Floquet eigenstates, we identify two distinct phases: (i) a many-body localized (MBL) phase, in which almost all eigenstates have area-law entanglement entropy, and the eigenstate thermalization hypothesis (ETH) is violated, and (ii) a delocalized phase,...
متن کاملMany-body localization in dipolar systems.
Systems of strongly interacting dipoles offer an attractive platform to study many-body localized phases, owing to their long coherence times and strong interactions. We explore conditions under which such localized phases persist in the presence of power-law interactions and supplement our analytic treatment with numerical evidence of localized states in one dimension. We propose and analyze s...
متن کاملMany-body interactions in quasi-freestanding graphene.
The Landau-Fermi liquid picture for quasiparticles assumes that charge carriers are dressed by many-body interactions, forming one of the fundamental theories of solids. Whether this picture still holds for a semimetal such as graphene at the neutrality point, i.e., when the chemical potential coincides with the Dirac point energy, is one of the long-standing puzzles in this field. Here we pres...
متن کاملMany-body localization phase transition
We use exact diagonalization to explore the many-body localization transition in a random-field spin-1/2 chain. We examine the correlations within each many-body eigenstate, looking at all high-energy states and thus effectively working at infinite temperature. For weak random field the eigenstates are thermal, as expected in this nonlocalized, “ergodic” phase. For strong random field the eigen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2016
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.117.240601